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I. Introduction 

In this note, we try to derive an expressionforthe transverse 

impedance between an unbunched particle beam and its surrounding when 

the cross section of the vacuum chamber varies along the circumference 

of the machine. Only the situation of frequencies below cutoff and below 

resonances is considered. 

The transverse coupling impedance can be calculated from the 

electromagnetic fields generated by a perturbation on a beam of charged 

particles. Since all pertinent equations are linear, it is sufficient to 

investigate a sinusoidal transverse modulation of charge density with mode 

n3 i.e., with n wavelengths along the machine circumference. The perturbating 

wave travels with phase velocity 6,~ whereas the particle velocity is spc. 

Thus the circular frequency of the perturbating wave is w = knswc = nswc/R, 

where R is the radius of the storage ring. We shall neglect the curvature 

of the vacuum chamber which we replace by a straight periodic cylindrical 

pipe radius b with period 2nR with a cylindrical beam of radius a at the 

center. Periodically, with distance 2rR, the radius of the pipe is enlarged 

to the value d over a length g (Figure 1). 

*written in March, 1981 
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11. Perturbing source and field equations 

The perturbing charge density of the beam is 

P = !As&~ d’(a-r)tip [k;Cfi-&I - ~bt], 

with k 5 kn = n/R, 2 the unperturbed density, $ the azimuthal angle of 

the beam pipe and A the maximum transverse displacement at angle $ = in. 

The corresponding perturbing current density is 

x7 = PBPC, 

J, = +A$, 

J+ = J, 4 , 

and 

Js = ~~A& (~~-b)u)B(a-r>gxpli4(g- f9.l -id.], 

where y designates the transverse direction at 4 = $T. 

Maxwell equations governing the longitudinal components of the 

electric field ? and magnetic field -H'are 

and 

(VI+ $$)H, = - (Fx “), 

where Z. = 120nohms and co are respectively the impedances and electric 

permittivity for free space and a time dependence of exp (-iwt) has been 

assumed for all fields. The transversecomponents?t andqt can be expressed 

in terms of Ez and HZ by 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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(&+$)< = i$$- + ~+~X&-+;r,j;7> (2.8) 

and 

(-g++g = pg!h - i+if*g - 7.&5;7. 

Due to the presence of the transverse current, Eq. (2.5), HZ is nonvanishing. 

As a result, we have all components for ?and ?and the situation is more 

complicated than that for a longitudinal perturbing wave. 

III. Solution 

In the beam region, O<rsa, the solutions of Eqs. (2.6) and (2.7) 

are respectively 

L$ = -zm i~~I,(&d-)s~~~ e*p [*.Lhl(z- if)], 
and 

~H,I = h$, iAA I,(~,,,r)coqJ ap LikfJz- 4 $1, 

(2.9) 

(3.2) 

2 where lk=k,,, - U2/C2 , km = m/R and I1 is the modified Bessel functionoforder 

1. The time dependent factor exp(-iwt) has been left out for the sake 

of convenience. Using Eqs. (2.8) and (2.9) we get for the transverse fields, 

E; = .#+ bkd ))I hl - ~~A,f,I;(l(,+ SkUII)~~B,ICdSPbp~ik-[z-f?~~ 
(3.3) 

and 

8Ho’= c [- $; #J&F)+ ~-A,r:(%-‘)-G,,nlp,l”~~ -=di4M(r-f$J~ 

m 

(3.4) 

where we have used the notation 



-4- 

? = .qA&/~, 

We also define 

p, = BP - pw * 

PA = I- BPBW 

(3.5) 

(3.6) 

(3.7) 

for later use. In Eq. (3.5), y s x,. 

The solution in the 'pipe region' with a<,r,<b differs from 

Eqs. (3.1) to (3.4) only by the absence of the source terms and by the 

presence of the terms containing the modified Bessel function of the second 

kind Kl(xmr): 

G” = g i[.mI,(*hr) t C,lY&r)]s~~ erp[4&- if)], (3.8) 

ZHzl’ = g i/II; I,C&r) + ChiK(&r)]coS+ exp k4n(f - if)], (3.9) 

6-i = z ( j$ [.m I&, 4 + C,K clcd] 

(3.10) 

- -$fb[BLI:($,,,r) + c~K:(~~r)ljcos~r*P1;6(L-~B~, 

and 

I.ti;’ = lz{- +$K I&~) + c;K,(~~~~] 

t $$--[B,,,I:(l+,r) + &,~~&,~)]) Sh# ep [;‘4h cz- $?)./. 

(3.11) 

We can compute Em, B,', Cm, and Cm' in terms of Am and Am' by matching 

E z' E$, HZ, and H$ at r = a leading to 
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4;~" 5 i[AJ,&r) - IL, -$ ~,+T(~rj]W J++ [~k,(z- $t)], (3.12) 

@ z 3 { + Ah r, (yhr) - $~:I,‘($P) f Sk ha+!~ %‘-) 

_ +,,QQ~)J/ cds+ eq [UL- MJ, (3.14) 

and 

z//f% 3 f- ~~‘u&.) f ~phI~&r) f &,[:$~&T+-) 
(3.15) 

- pp947qq 54 +q [;GC~- $1 f 
where 

We assume, for the moment, that the walls of the vacuum chamber are 

perfectly conducting. Thus the longitudinal fields in the cavity region, 

b<r<d, can be written as 

p= s* ~L&~(@-)~SdsZSli~, I 
and 

af: = ge ;F; S(i$r)s/;ro(SZCm+ > 

with 

es = l=/# 1 s = 0, /,2,..., 

fy = ciJa* l&a’, 

R h-r-) = K,(rd) I, (Tr) - 1, (rd)k(Tr), 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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StTr) = K,‘(rd)I, (l-r) - r,‘crd)k(rr), 

so that R(rd) = S'(rd) = 0. The corresponding transverse fields are 

(3.22) 

(3.23) 

and 

The final step in the field calculation is the matching of the 

tangential field components at r = b, i.e., 

Ezn = 
i 

2 
0525 

& 

0 % 5 2 <an&, 

E; = 
i 

v 0 s 2 ,r & 

0 % 5 2 6 are, 

Hz= = cJfzar 0 5 .? 1. 8.J 

6; = H+ 0 G 2 ,< 7) 

all evaluated at r = b. 

For simplification, we introduce the following abbreviations: 

/4i = A,4 hd, 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

i$; = A:, 1, (& b), 

&v = s,$qd-@J/h, 
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8; = k,, 1% T/J, 1 (W/4, 

I km = I:(%A!/ik,bLQ,6)1, 

(2% = Sm,,t~~~a J-‘1W/(kb), 

c; = &., ‘$a@, T’(lb)/C4UJ 

5s = D,R(r;d), 

F; = F,S(r,b), 

4, = 14’(1;b)/Cr;b R(r, b)], 

Rs = S’(r,b)/LCbS(r,b)], 

u mm = 4, c&d~, 

v,, = ~dl;‘b’u). (3.29) 

Then Eqs. (3.25) to (3.28) are translated into 

9 j$ cosds2 0~Z.q 
z (Ah-&) ap [i+m (Z- if)] = (3.30) o 

fbz 627rR, 

i 

5 (i V,.ij - < P,,)~~~%Z ooq 
= (3.31) 

0 % 
c z G mu, 
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2 (&- B:,)*xp[i~~~z- if)] = 5 4 sf;lti,z, 0 d z s f (3.32) 

and 

g [(A;,L - (Q - &&j; -B:,)]o*p [41.6 WI 

(3.33) 

= T(ixs5 + D;K&)~~%Z, O$ZS 
% 

The solution is straightforward. Equations (3.30) and (3.31) 

give 

Al,-& = c =i szo ‘%&) 

um,hidJ - mmbj - Cl) = - 1’ D( sgo Mm, CL v,& - 6 e*) , t 

whereas Eqs. (3.32) and (3.33) give 

+(I+c,< = i g-,M,:, (fc - Z), 

(3.34) 

(3.35) 

(3.36) 

In above, 

4s = 7W/Z A. ndm , s even 
(ndh)n)+- hsh))’ 

(3.38) 
-l'Cos7rdbl, s odd 

N = 7rdb Sm. ??ddhl , s aver, (3.39) 
Ins 

mya- (RS/o - L’M nleh’ ) s odd 
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and a = g/ZrrR is the circumference factor or the fraction of the ring 

with enlarged cross section. It will be more convenient to write the above 

expressions in matrix form: 

U(,q--j) - (I$- er) = o( lq(v.ii + i PF)) 

Q-IF = (’ M’(/j’- jf), 

Q-‘(iVF+ KB) =L Nt[(IJ- f)- U(@- B’)], 

where 

Q-js, = d a,, + &s&sJ . 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

Here only M and N are full matrices, U,I,P,V and K are diagonal, A,A',l?,F 

are column matrices whereas B,B',?' and c are column matrices with only 

one entry m = n. 

Finally F and 6 can be solved from Eqs. (3.42) and (3.43) and sub- 

stituted in Eqs. (3.40) and (3.41) to get 

fi- g = q (NQK-I,,@ N@(-‘NtU)(A;-&) + d’QK-‘Nf(I~- c), (3.45) 

and 

u(j-B)- (I/q+?) = ti [M(V’C#- PQ)E/lt-ylVQK-'NtV](~-BI) 

+ 44V4K'Nt(Iii-c). 
(3.46) 
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IV Transverse coupling impedance 

The transverse force per unit charge experienced by the beam 

particle over one period is 

F = I’yz tzzt 6~ rzd Ib.,,t. hrr-8/x> 
0 

m 
I 

I L- 
dz 

0 
E;(w) -twG(+ f)],. &,t~(r-o,r) 1 

= 7RY&9Jn + ($4: + =W~y.a 

-4 
where y. 

W 
= (l-8,2) . We notice that only the fields with the same mode 

number as the perturbation contribute to the coupling impedance; the other 

modes just average to zero. The transverse impedance is defined as 

2, = - ; J=/&~,A), 
where 1,is the unperturbed beam current, or 

z, = -i $F (&Ah + /$A: + 27/97&w). 
PO 

The enlarged' portion of the vacuum chamber is usually only a 

very small portion of the whole ring; i.e., a:<l. When the wavelength of 

the perturbation is much longer than the length g of the enlarged portion, 

i.e., n<<l = 2irR/g, our solution (3.45) and (3.46) can be expanded in powers 
a 

in ci. Neglecting O(CX~), we get 

(4.1) 

(4.2) 

(4.3) 
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j _ B = o( (NQ&-‘VM’- NQK-‘&J)(I*p’- &) t o( NGWN’(IB- t), 

I#- ?‘a o( [ UNQK-~VM~ - UNQK-‘N’U t MlPQ - QK-‘V=)fl+ t ,qv&N+u]. 

- (I-‘I%!?) t e (UtiQK-IN’- flVQ/c-‘~t)(I~ - L?). 

We first consider the trivial case of ~1 = 0, corresponding to a 

smooth vacuum chamber. We find 

A = 8, 

-1 A = L-c: 

or 

A,, = 42 ‘IP~ T(W/hfr, QU/, 

A,’ = &~p, l-~~b)/lYk)I:(~bj. 

Putting in the small argument approximation for the Bessel functions, we 

arrive at 

& = 22 (2 - +) 

(4.4) 

(4.5) 

(4.5) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

in agreement with the well-known formula for the transverse impedance of 

a perfectly conducting cylindrical vacuum chamber. The convention used 

here is: positive imaginary part implies capacitive. 
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The first order a correction can be obtained by using Eqs. (3.45) 

and (3.46), from which the first order correction in An and A,,' can be 

written as 

J-A, = 2o(.rzfX? p w +WJ, 
b'tf, fik ' 

sA: = .?c+ $pPk/. + /%M - fvdlr,‘)] 

where 

(- l)‘Ls 

and 

hdh>= 
[h-d’- hSh)~2 

GbS’(r:bl I 
S(T; b) 

Under the conditions ran<<1 and nd/R<<l, we can make the approximation 

r 
S 

- rrs/g and sum W, and W2 over odd values of s only. Thus the transverse 

coupling impedance differs from the smooth beam pipe value of Eq. (4.10) by 

S& = -; y$jq@A, +pM) 

= --c 
’ ,$b’ 

-&fG (&I$ + q -#Jaw,)* 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

In the case of bellows, with g<<T*b/32, we find 
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wo= $$ 
+ 

with S = d/b while W, and W2 can be neglected. Substituting Eq. (4.17) 

in Eq. (4.16), we get the transverse impedance for a bellow 

sz, = -i $ep&. 

(4.17) 

(4.18) 

For pairs of cross section variations for which g>>ab, summing 

up W, and W2 using small argument approximationsforR, R', S and S', we 

get 

(4.19) 

w, = a- 1 - $r4h)a s-- 1 
s’+ 1 

while W. is the same as Eq. (4.17). The result is 

St; = 4.4 A%= ’ &j- [ 1 - +,8:$&h)=] 1 

-f 
where y p = (l-e,*) , so that the total transverse impedance is 

2, = ++&&$ + +$--$) 

e J3’-r)’ 
+2 S’+I - +$i plrpY~dh)y~J) * 

(4.20) 

(4.21) 

The first two terms are just the sum of the contribution of the smooth 

chamber with radius b and circumference factor l-a, and of the smooth 

chamber with radius d and circumference factor CL. To obtain a better 

estimate of the transverse impedance of a pair of cross section variations, 
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we should not use small argument approximations for the Bessel functions 

because no matter how small rib/g is, ash/g will become big as s increases. 

We decompose the transverse impedance into 

t; = (I- &)~ + M (r,), * (&)c ’ 

where (Zt)b and (Zt)d are the.transverse coupling impedance of a smooth 

pipe of radius b and d respectively and (z~)~ is the contribution of the 

pair of steps in cross section. From Eq. (4.16), 

& = - Pi4 f$=[g w, f- w, - B,‘h$ + &a (I- #a)]’ (4.22) 

which can be rewritten as 

k), = - ; ns;b’ =[(w,+h+B,‘hh + 2+a(+2&)]- (4.23) 

We are still under the conditions that rrcrn<<l and nd/R<<l, but g/d can take 

any value. The second term in Eq. (4.23) contains a factor (,,n)2 through 

W2 and can therefore be neglected while the third term is small when the 

energy of the particle beam is high enough. As a result, we are left with 

hi), = - ’ n/qB,Lb’ z& (w,+w. 

Since rrdn<<l, the argument of W. 

jr.bj’S (*b/R)‘= (?i?h)‘(&/$)’ 

(4.24) 

(4.25) 

is always small, so that small argument approximation can still be used in 

wO. 
What we need to do then is to sum up W, numerically using the exact 
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values for the modified Bessel functions. The normalized transverse im- 

pedance for the two steps (Zt)c/(-iZo/ndhp2) depends on g/d and S only. 

It is plotted in Figure 2 as a function of S-l for various values of g/d. 

We note that the normalized transverse impedance becomes independent of 

g/d when g/d Zl,and can be fitted to within a few percents by the 

following expression: 

(z,), t -+-& (s-d 0.9t7f 0.78s ' (4.26) 

V. Resistive wall 

The resistivity of the walls of the vacuum chamber can be included 

in our discussion. Equation (3.17) will contain an extra term that does not 

vanish at the wall, so will Eq. (3.18) and Eqs. (3.23) and (3.24) that follow. 

The matching of ?and?at r = d will determine the extra terms added. Further- 

more, the matching of fields at r = b, Eqs. (3.25) to (3.26), will be more 

complicated. However, the solution is straightforward and simple. The con- 

tribution of the resistive walls leads to an extra transverse impedance 

(&lk, = (l-i,,,[(,-ol)~ + M $ ] J 

where S,, and 6E are the skin depths of the walls of the vacuum chamber and 

those of the enlarged part respectively. Here the finite conductivity of the 

side walls of the steps has not been included. 

VI. Numerical values for the Energy Doubler 

The emittance of the beam in the main ring is E = 1.5nmm-mrad at 

-8.9 GeV and is inversely proportional to the beam energy. The 

@-oscillation parameter for the Doubler has a maximum of fi,,, -100 m, so that 

the beam size radius is 

(5.1) 
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0.30 em. a.+ /sOGel’, 
a = 

0. I2 cm. at 1000 GV. 

Taking the radius of the ring R = lo5 cm and the radius of the vacuum 

chamber b = 3.5 cm, using Eq. (4.10), we arrive at the transverse impedance 

for a smooth vacuum chamber 

1.P.z lo*i n/o. cd 130 Ger/, 
2.6 x lojd’ Wk.,. SLf /uoo Gel/, 

which is capacitive. 

The Doubler has roughly 1000 bellows, each of length g -2.94 cm 

and radius d -4.26 cm, giving an enlargement ratio S = d/b -1.22. Since 

32 g/(v2) -2.75, Eq. (4.18) cannot be used. This Eq. (4.18) would lead to 

the incorrect value for 1000 bellows 

S& = -i $ 1 x&- x I000 
9% 

(6.1) 

(6.2) 

= -+ * J-7* /03 l-2 /em. 

We can also consider the bellows as 1000 pairs of steps. Here 

g/d = .69. We see from Figure 2 that at S = 1.22, the g/d = .69 curve is 

very near to the curves for large g/d; so Eq. (4.26) can be used. It gives 

for 1000 pairs of steps the correct extra transverse impedance 

(2;), = -i 0 z- (S-r)’ x /OOO 
w#s4; 0.90 + 078s 

(6.3) 

= - 4. 7.4 * 10’ n/cm. 

which is different from the value in Eq. (6.2). We note that the contribution 

of the bellows is inductive and is comparable to the transverse impedance of 

the smooth vacuum chamber. 
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Finally, using Eq. (5.1), the resistive part of the transverse 

impedance is found to be 

mm, = (,-;)(pR/h)h Jl l-7* /o”R/c*, . 

which is quite significant when n is near and less than the cutoff mode 

number and dominates at low frequencies. In Eq. (6.4), uR is the relative 

magnetic permeability of the chamber wall and the conductivity of the chamber 

wall 0 = 13.7~10~ mho-cm -' for stainless steel has been used. 

The transverse impedance due to the Lambertson magnets has been 

estimated in a former paper': 

cr()k* = c,-i)(r,/h)% a.6xd ,;-+$ w-, 

when is beam is displaced by a fraction x from the center of the magnet 

opening. This contribution is of the same order as that of the resistive 

walls of the beam pipe. 

A stability criterion has been derived by Zotter and Sacherer, 

which is 

lz, I < 4s JgI(w2)~+ Qgy,, 

where Q is the tune, Q' is the chromaticity and Ip is the peak current 

which is related to the average current IA" due to M bunches each of r.m.s 

length ok by 

(6.4) 

(6.5) 

(6.6) 

For the Doubler,wetake R = lo5 cm, dispersion factor n = 0.0028, 

M -1000, IA" = 0.15 amp (2~10'~ ppp) and obtain 
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5s 14os”E-% -’ 4: en, 

with the RF voltage VRF on MV, E in GeV and the invariant bunch areas in 

eV-sec. Using VRF = 2.16 MV and S = 0.3 eV-set and Q'<<(n-Q)n, the stability 

criterion becomes 

J&I < { dy; ;; 

a.+ ko Gev, 

at /uoo 6s:u: 

We note that the above computed Zt is safe for large n but leads to instability 

for small In-Q 

Reference 

1 K.Y. Ng, Ferm 1 

and transverse dampers are required to restore stability here. 

lab UPC-149 
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Fig. 1. Schematic cross-section of a few periods of the model 
geometry. 
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